Euclidean vs Graph Metric

نویسنده

  • Itai Benjamini
چکیده

The theory of sparse graph limits concerns itself with versions of local convergence and global convergence, see e.g. [41]. Informally, in local convergence we look at a large neighborhood around a random uniformly chosen vertex in a graph and in global convergence we observe the whole graph from afar. In this note rather than surveying the general theory we will consider some concrete examples and problems of global and local convergence, with a geometric viewpoint. We will discuss how well large graph approximate continuous spaces such as the Euclidean space. Or how properties of Euclidean space such as scale invariance and rotational invariance can appear in large graphs. For the theory of unimodular random graphs and stationary graphs see [2] [8]. The first sections consider approximating the Euclidean and Finsler metrics by graphs. We study the emergence of rotational, scale and conformal invariance in large graph metrics. We then move on to comment on random graph metrics. Starting with graphs obtained by perturbing the Euclidean metric, and then moving on to random graphs that are restricted to have a planar topology. In particular, we will study graphs generated by random subdivisions. Local and global graph limits will be woven into the whole discussion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Tangent Bundle of the Hypersurfaces in a Euclidean Space

Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...

متن کامل

Fixed point results in cone metric spaces endowed with a graph

In this paper, we prove the existence of fixed point for Chatterjea type mappings under $c$-distance in cone metric spaces endowed with a graph. The main results extend, generalized and unified some fixed point theorems on $c$-distance in metric and cone metric spaces.

متن کامل

A Metric Learning Approach for Graph-based Label Propagation

The efficiency of graph-based semi-supervised algorithms depends on the graph of instances on which they are applied. The instances are often in a vectorial form before a graph linking them is built. The construction of the graph relies on a metric over the vectorial space that help define the weight of the connection between entities. The classic choice for this metric is usually a distance me...

متن کامل

Metric learning for graph-based label propgation

The efficiency of graph-based semi-supervised algorithms depends on the graph of instances on which they are applied. The instances are often in a vectorial form before a graph linking them is built. The construction of the graph relies on a metric over the vectorial space that help define the weight of the connection between entities. The classic choice for this metric is usually a distance me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012